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Jet flow instability of an inviscid compressible fluid 
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A linear analysis of the perturbations associated with the jet flow, U ( y )  = sech y, 
of an inviscid compressible fluid is considered. Some subsonic stable solutions, 
not associated with stability boundaries, are first determined. Then a subsonic 
neutral solution is found and used as an aid in determining stability boundaries 
of the symmetric and antisymmetric disturbance modes. Numerical methods are 
also used to determine instability characteristics, including the Reynolds stress 
distributions. Comparisons are made with previous results obtained for the hyper- 
bolic-tangent velocity profile and with unstable characteristics of the Bickley jet. 

1. Introduction 
Recently, an investigation of the stability of a compressible shear layer, 

represented by the hyperbolic-tangent profile, was presented (Blumen 1970). 
In  this study, hereafter referred to as I, viscosity and heat conduction were 
omitted and the fluid medium was assumed to be an ideal gas, whose basic thermo- 
dynamic state is constant. This physical model is a relatively straight-forward 
extension of the homogeneous fluid model which dehes  the Rayleigh stability 
problem. The essential difference lies in the fact that perturbation pressure 
changes, associated with the compressibility of the medium, are possible. In  the 
limit, as the fluid tends toward incompressibility (Mach number M --f O ) ,  the 
Rayleigh stability equation governs fluid motions (see (4)). 

The stability analysis in I was basically a numerical study abetted by a neutral 
solution of the stability equation (3). The investigation revealed that the com- 
pressibility of the medium is a stabilizing feature, at least for disturbances whose 
real phase speed is subsonic relative to the basic flow at infinity. Perhaps the most 
interesting feature uncovered was the appearance of a discontinuity in the slope 
of the Reynolds stress r across the critical point, where the inflection in the 
velocity profile occurs. An initial second-order tendency toward the creation of a 
Kelvin-Helmholtz shear layer occurs as a by-product of this jump in d ~ / d y .  

The present investigation is intended to complement the work in I, by consider- 
ing the stability of a symmetric velocity profile. Since it was realized that reliance 
on numerical computations was a necessary adjunct, it seemed desirable to choose 
a velocity profile for which a neutral solution could be obtained and used to check 
numerical results. The ultimate decision was based on the virtues of the hyper- 
bolic-secant profile and its square, the Bickley jet. Some recent calculations of 
the eigenvalues associated with the Bickley jet, for M = 0, have been displayed 
by Drazin & Howard (1966). However, the hyperbolic-secant profile was chosen 
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for this investigation because a neutral solution for M = 1 could be obtained. 
Moreover, a rich harvest of stable solutions, not associated with stability bound- 
aries, could also be determined. Finally, it  was felt that an investigation of the 
hyperbolic-secant profile would make a useful contribution to the library of 
solutions of the Rayleigh problem ( M  = 0)) which have been documented by 
Drazin & Howard. 

2. Basic equations 
The model and attendant stability problem have been discussed in I. Briefly, 

we consider the linear stability of a basic plane parallel flow, U*(y*), of an 
ideal gas moving in the x* direction with transverse variations in the y* direction. 
Superposed on a basic thermodynamic state, characterized by a constant adia- 
batic sound speed a* = yp*/p*, are (x*, y*) components of the perturbation 
velocity (u*, v*) and pressure p*. The basic parameter of this model is the Mach 
number M = U/a*, where U is a characteristic velocity scale of the basic flow 
associated with its transverse variation over a length scale L. In  the usuaI man- 
ner, we define non-dimensional co-ordinates, time, velocities and pressure as 

(1) 

(2) 

where q is u, v or n-, a is the real x wave-number and c = c, + ici is the complex 
phase velocity. Then, from I, the differential equations for the amplitudes of 
pressure G and velocity a are 

i (x,y) = (x*,y*)/L,  t = t*U/L,  
Ti = E*/U, (u, v) = (u*, v*)/U,  
n = p*/p*u2. 

We investigate the stability of the basic flow to normal mode disturbances. 

q = p^(Y) exp - ct)l, 

( ~ - c ) G ’ ’ - 2 ~ ’ ; ’ - a ~ ( E - c )  [1-M2(E-c)2]; = 0 (3) 

and ( [ ( U - C ) a ’ - U ’ G ] / [ l  -M2(U-c)2])’-a2(Ti-cC)G = 0, (4) 

where a prime denotes differentiation with respect to y. The relationships be- 
tween the perturbation quantities may be expressed as 

where c* is the complex conjugate of c. 
For subsonic disturbances relative to the basic flow at infinity, 

1 - & P ( U  - c)2 > 0, 

all perturbation amplitudes decay exponentially in the transverse direction. 
Accordingly, 

On rigid boundaries the normal velocity must vanish. From (5), the correspond- 
ing boundary conditions are 

8 = i t  = 0 (y = +m). (6) 

8 = ; i f  = 0 ( y=  yl,yz). (7) 
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3. Stable and neutrally stable waves 
Stable waves 

There are two classes of stable disturbances which are subsonic at  infinity. One 
type is adjacent to unstable subsonic disturbances and is usually referred to as 
a ‘neutral’ subsonic disturbance. Lees & Lin (1946) established that a necessary 
and sufficient condition for the existence of a neutral subsonic disturbance is 

Ti” = 0 at y = ys, (8) 

where ys is the point where U. = c,. If the velocity profile is symmetric, there can 
be two inflection points where U. = c,. We shall consider neutral waves associated 
with the hyperbolic-secant profile in due course. At present, we turn our attention 
to the second class of stable disturbances which apparently have remained un- 
touched in the literature. 

Upon division by (‘ii - c ) ~ ,  (3) may be written 

(pi -e]-2i?’)’ - aZ([U. - c]-2 - W) i3 = 0. (9) 

For the present, we let c = c, and assume ( U - C , ) ~  > 0. Multiplication of (9) by 
i3*, the complex conjugate of i?, and application of (6) and/or (7) yields 

/;(U.-cT)-2p’pdy = a2 ( 1 M ~ ( U - c , ) ~ - l } ( U . - c , ) - ~ ~ i ? ~ 2 ~ y ,  (10) 1: 
where y1 and/or yz may be a t  infinity. It follows from (10) that stable waves, 
whose relative phase speed (c, - Ti) is everywhere subsonic, cannot exist. However, 
waves whose relative phase velocity is supersonic everywhere can occur. These 
stable oscillations are progressive sound waves satisfying 

where Emax and Timin denote the maximum and minimum values of U. respectively. 
The possible existence of stable waves, which are both subsonic and super- 
sonic over the region of flow, is not precluded by (10). In order to establish that 
waves of this type do exist, we shall investigate solutions of (3) with 

D = sechy (-00 6 y < 00). (12) 

For simplicity, we shall refer to these solutions as ‘stable ’ waves, to distinguish 
them from the neutrally stable waves defined by (8). 

A stable solution of (3), found by inspection is, 

i? = sech y tanh y, (13) 

where u = 24, M = 1, C, = -2-4. (14) 

6 = 2ia-l sech y(sech y + c,), (15) 

The velocity perturbations are 

42 = sech y(sech y + 2c,) tanh y. (16) 
47-2 
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The relative phase velocity of this stable wave is supersonic in the vicinity of the 
jet axis, ultimately becoming subsonic when U < 1 + c, = 0.293. 

I n  order to explore further solutions of (3), we let 

i? = Ti#, (17) 

where ;i2 is given by (12) and c, = ci = 0. Then the transformation 

z = tanh y (18) 

casts (3) into the form of Legendre’s equation 

(1 - 22)  #,, - 224, + {v(v  + 1) -pZ( 1 - 2”-’} 4 = 0, (19) 

where 1 v(v + 1) = (aH)2, 

p2 = 1+a2. 

The boundary conditions (6) can only be satisfied if p is an integer (Erdelyi 
et al. 1953). There are an infinite number of discrete eigenvalues and correspond- 
ing eigenfunctions, which satisfjr (19) and (20). A few of the lower modes, for 
integer values of v, are displayed in table 1. The perturbation velocity com- 
ponents may be determined from ( 5 ) .  

Eigenvalues E igenfunc t ions 

0 39 29 
0 34 2 
0 Z(2)) (3/2)9 
0 2(2$ (5/2)9 

TABLE 1 

secha y 
sech3 y tanh y 
sech4 y 
sech4 y tanh y 

These stable waves, like (13), are supersonic in the vicinity of the jet axis and 
become subsonic as ii decreases. Note that both integrals in (10) remain finite 
because the integrands approach zero as y -+ k 00, even though Z-f 0. 

A neutrally stable wave 

When the basic flow is symmetric and M = 0, both symmetric and antisymmetric 
eigenfunctions may be found. However, they have different eigenvalues c for 
each a. Moreover, the first symmetric mode of the transverse velocity com- 
ponent 0, is more unstable than any 0 antisymmetric mode of a given basic 
flow (e.g. Drazin & Howard 1966). By example, we shall show that this result 
may be extended to include subsonic disturbances for which M + 0. 

We now turn our attention to the class of waves defined by (S). We seek both 
symmetric and antisymmetric neutrally stable eigenfunctions associated with 
the basic flow (12). The numerical procedure for the determination of these 
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functions is discussedin 0 4. However, a symmetric analytical solution correspond- 
ing to one set of eigenvalues (as, M ,  c,) was found by inspection. This solution is 

8 = iA sech y(sech y + c,), (21) 
.ti = all Asechy(sech y +  2c,) tanhy, (22) 
$ = a;l A sech y tanh y, (23) 

01, = 24, M = 1, C, = Us = 2-4, (24) 

where A is an arbitrary constant to be specified. Interestingly the realization of 
this solution led to the discovery of the stable solution (13)-(16). 

4. Numerical computations 
Neutral solutions 

The determination of the stability characteristics of the hyperbolic-secant 
profile (12), as well as the normalization of the eigenfunctions, proceeded as in I. 

M 

F I U ~ E  1. Stability boundaries for the symmetric (solid) and 
antisymmetric (dashed) modes. 

The neutral wave characteristics are displayed in figures 1, 2 and 3 and table 2. 
As shown by (8), the neutral phase speed is 

c, = u, = 2-6 (25)  

when the basic flow is represented by (12). Thus the waves are subsonic relative 
to the flow at infinity if M < 24. It was not feasible to carry out numerical com- 
putations of eigenvalues associated with the symmetric disturbances when 
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1.4 < M < 24, because a ( M )  is extremely sensitive to changes in M in this range. 
(We do not consider the stability properties of the flow to sonic or supersonic 
disturbances, M 2 0, here.) To establish whether this behaviour was due to an 

Y 
FIGURE 2. Neutral symmetric oigenfunction Gi (solid) and associated value of f i r  (dashed) for 
M = 1. The neutral eigenfunctions for M = 0 and M = 1.4 differ little from the functions 
displayed. 

7 1 - 3 4 5 

Y 

values of 73, (dashed) for M = 0 and M = 1. 
FIGURE 3. Neutral antisymmetric eigenfunctions Gf (solid) and associated 



Jet flow instability 743 

error in the numerical program, the following checks were considered: (i) The 
program could reproduce the analytically determined eigenvalues (24) to any 
accuracy desired. (ii) Computations with non-zero ci > 0 showed that the neutral 
eigenvalues were approached smoothly as ci was decreased down to ci = 

Furthermore, for any M ,  the first symmetric mode is more unstable than any 

M 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.35 
1.40 

Symmetric 
mode a, 

1.4653 
1.465 
1.463 
1.461 
1.457 
1.453 
1.447 
1.440 
1.433 
1-424 
1.414 
1.403 
1.391 
1.378 
1.370 
1.362 

Antisymmetric 
mode a, 
0.646 
0.64 
0.63 
0.62 
0.61 
0-59 
0.57 
0.54 
0.50 
0.46 
0.419 
0.36 
0.29 
0.21 
0.15 
- 

TABLE 2. Neutral eigenvalues 

antisymmetric mode. (iii) The eigenfunctions, shown in figure 2, were determined 
from (4) in the range 0 < y < 8. In  order to ensure that these functions decrease 
in amplitude rapidly as IyI increases, as required by (6), it was necessary to obtain 
at least three decimal place accuracy in the computed eigenvalues. Otherwise, 
accumulated round-off errors would at  times cause the amplitudes to begin 
increasing slightly at some pointy 2 5. This independent check on the computed 
eigenvalues seems to establish their accuracy. The neutral antisymmetric 
eigenvalues and eigenfunctions were also checked for error by the methods 
employedin (ii) and (iii) above. 

Unstable solutions and Reynolds stress 

Unstable eigenvalues, associated with both the Symmetric and antisymmetric 
modes, appear in tables 3 and 4. Some unstable eigenfunctions are displayed in 
figures 4 and 5. The initial value of the Reynolds stress, averaged over one wave- 

is displayed in figure 6. The maxima of 171 always occur a t  the I yI associated with 
the inflexion points in the profile, I ysl = 0.88. These computations were made 
with Ay = 0.02 and there was no evidence of jumps in T or its derivatives in 
0 < (yI < 8. The perturbation energy equation, derived in I, may be written 

length, T =  -Reu.Rew = -+(i2,.3r++iSi) (26) 
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denotes the disturbance kinetic plus elastic energy per unit mass. Since 

U' = - sech y tanh y, 

an initial conversion of mean flow energy to perturbation energy occurs at  all 

" .  
7 1 - 3 4 5 

Y 

FIGURE 4. The real (dashed) and imaginary (solid) parts of the 
unstable symmetric eigenfunction 6 for M = 1, u = 0.6. 

,/------ ---_ 
I I I 
7 3 4 5  

L < :- 
I 

Y Y 

FIGURE 5. The real and imaginary parts of the unstable antisymmetric eigenfunction ,$ for 
M = 0, u = 0.32 (solid) and M = 1, u = 0.20 (dashed). 
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U 

1.465 
1.414 
1.4 
1.2 
1.0 
0.8 
0.6 
0.4 
0.2 
0.1 
0.01 

M = O  M = I  

Cr 

0.707 

0.693 
0.648 
0.598 
0.539 
0.468 
0.375 
0.239 
0.138 
0.016 

ci 
0.0 

0.008 
0.037 
0.073 
0.117 
0.168 
0.221 
0.255 
0.235 
0.097 

uei 

0.0 

0.011 
0.044 
0.073 
0.094 
0.101 
0.088 
0.051 
0.024 
0.001 

- 

Cr 

- 
0.707 
0.704 
0.659 
0.609 
0.549 
0.478 
0.386 
0.248 
0.144 
0.016 

c i  

0.0 
0.001 
0.027 
0.059 
0.100 
0.150 
0.205 
0.248 
0.234 
0.097 

TABLE 3. Unstable eigenvalues : symmetric mode 

, 

0.0 
0.001 
0.032 
0.059 
0.080 
0.090 
0.082 
0.050 
0.023 
0.001 

a 
0.646 
0.6 
0.5 
0.419 
0.4 
0.32 
0.3 
0.2 
0.1 
0.01 

M = O  
h 

7 \ r  

Cr ci 

0.707 0.0 0.0 
0.708 0.011 0.007 
0.715 0.035 0.018 

0.729 0.060 0.024 
0.748 0.080 0.026 
0.754 0.085 0.026 
0.795 0.104 0.021 
0.863 0.106 0.01 1 
0.973 0.038 0.000 

- - - 
- 

0.707 
0.708 

0.720 
0.747 
0.804 
0.936 

- 

M = l  

ca 

h 

- 

- 
0.0 
0.005 

0.032 
0.061 
0.084 
0.051 

- 

TABLE 4. Unstable eigenvalues : antisymmetric mode 

0.0 
0.002 

0.010 
0.012 
0.008 
0.001 

- 

5. Remarks 
The jump in drldy,  found in I, does not appear in the present results. However, 

the possibility that 7 could behave differently in unexplored regions of the 
unstable part of the a, M plane cannot be excluded. 

The symmetric mode, associated with the hyperbolic-secant profile, is able to 
draw upon basic flow energy in a very efficient manner since the stability charac- 
teristics of this mode are relatively insensitive to compressibility. Apparently 
little energy is needed to do work against the elastic force, associated with the 
medium, before instability is initiated. This feature is evident in figure 1 and in 
table 3, where the growth rates are displayed. However, the stabilizing effect of 
compressibility is much more in evidence when the stability characteristics of 
the asymmetric modes are viewed. This is also true of the unstable modes 
associated with the hyperbolic-tangent profile, presented in I. 

The instability characteristics of the Bickley jet, presented by Drazin & 
Howard (1966), have been used to construct the growth rate curves in figure 7. 
In comparison with the present results, the Bickley jet is generally more unstable 
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on two counts: The instability occurs over a wider range of wave-numbers and 
the growth rates are larger when a 2 0.2. 

- 4  -3  -2 - 1  1 2 3  4 

Y 
FIGURE 6. The Reynolds stress distribution associatedwith the symmetric mode for M = 1, 
a = 0.6 (I), the antisymmetric mod0 for M = 0, a = 0.32 (11) and the antisymmetric mode 
for M = 1 ,  a = 0.20 (111). 

a 
0.8 - 

0.04 0.08 0.12 0.16 0.02 0.04 0.06 

ac i  aci 

FIGURE 7. Growth ratea for M = 0, associated with the symmetric (left) and antisymmetric 
(right) modes of the Bickley jet (solid) and hyperbolic-secant profile (dashed). 
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